$$x = 3$$
x = 3
- ๊ทธ๋๋ก ์ฐ๋ฉด ๋๋ค
$$x_i$$
x_i
- ์ธ๋๋ฐ ์ฌ์ฉ
$$x^3$$
x^3
- ์ ๊ณฑ : ^ ์ฌ์ฉ
$$\sum x_iw_i$$
\sum x_iw_i
- sigma : \sum ์ผ๋ก ์ ๋ ฅ. (์ญ์ฌ๋์ฌ) → ์ํ๊ธฐํธ์์ ํน์๋ฌธ์๋ ์ญ์ฌ๋์ฌ๋ก ์ ๋ ฅํ๋ค.
$$E(X) = \sum^n_{i=1}(x_i \times p_i) = \int^\infty_{-\infty}{x f(x) dx}$$
E(X) = \sum^n_{i=1}(x_i \times p_i) = \int^\infty_{-\infty}{x f(x) dx}
- ์๊ทธ๋ง: \sum
- ์๊ทธ๋ง ๋ฒ์: ^n_{i=1}
- X: \times
- ์ ๋ถ ๊ธฐํธ: \int
- ๋ฌดํ๋: infin
- ์ ๋ถ ๋ฒ์(-๋ฌดํ๋ ~ ๋ฌดํ๋) : ^\infin_{-\infin}
$$y=f(f(f(x \cdot W_1) \cdot W_2) \cdot W_3)
$$
y=f(f(f(x \cdot W_1) \cdot W_2) \cdot W_3)
- dot product: \cdot ์ฌ์ฉ
$$-\sum_k{y_k{\partial{\log p_k}\over{\partial{o_i}}}}$$
-\sum_k{y_k{\partial{\log p_k}\over{\partial{o_i}}}}
- ๋ฏธ๋ถ๊ธฐํธ: \partial
- ๋ก๊ทธ๊ธฐํธ: \log
$$\lim\limits_{a\to 0} {\theta_{i+1}-\theta_i \over \alpha} = {\delta \theta \over \delta \alpha} = \nabla_\theta J(\theta)$$
\lim\limits_{a\to 0} {\theta_{i+1}-\theta_i \over \alpha} = {\delta \theta \over \delta \alpha} = \nabla_\theta J(\theta)
- ๊ทนํ ๊ธฐํธ: \lim
- ๊ทนํ ๋ฒ์(a๋ฅผ 0์ผ๋ก) : \limits_{a \to 0}
- ๋ฏธ๋ถ ๊ธฐํธ: \delta
- ์ธํ ๊ธฐํธ: \theta
- ์ํ ๊ธฐํธ: \alpha
- ๊ทธ๋๋์ธํธ ๊ธฐํธ: \nabla
$$\begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix} \begin{bmatrix}
a \\ b \end{bmatrix} = \begin{bmatrix} 35 \\ 94 \end{bmatrix}$$
\begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 35 \\ 94 \end{bmatrix}
- ์๊ดํธ ํ๋ ฌ:
\begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}
- ๋๊ดํธ ํ๋ ฌ:
-
\begin{bmatrix} a \\ b \end{bmatrix}
์ถ์ฒ
https://katex.org/docs/supported.html
https://jjycjnmath.tistory.com/117